A case of implant placement with modified transplanted bone blocks using Fiber-less Er:YAG Laser

Daiki Yamashita, Takao Watanabe, Kazuhito Nishio, and Tsuneo Takahashi
Department of 3D Imaging Anatomy, Graduate School of Kanagawa Dental University

Background

Studies employing erbium laser wavelengths of 2.94 μm (Er:YAG laser) and 2.78 μm (Er:Cr:YSGG laser) found both systems to be efficient for dental hard tissue ablation. However, if we use laser for oral bone surgery, we need to consider the difficulty of using a laser handpiece in the mouth. The narrow space, many obstacles; tongue, teeth, denticles, implants, saliva and abnormalities like large tongue, small mouth, low jaw and TMJ will disturb instrument handling. Unconscious and sudden movement of the tongue, lips, cheek, head, neck, lower jaw by swallowing, biting, coughing, sneezing are liable to injure the mouth membrane. We need also to consider a long irradiation time for laser bone cutting. Laser takes a long time to cut, overheating occurs. overheating of laser causes the fiber to break. Laser headpiece handling in a narrow mouth causes uneven movement during a long irradiation time. 

![Figure 1](image1) Oral view at the first visit

Implants were exposed. Figure 2. Most surface of both implants were exposed. 

![Figure 3](image2) Alveolar sectional slice

No.22. Most surface of both implants were exposed.

![Figure 4](image3) Preoperative CT scan (cross-sectional slice)

Alveolar bone at No.12 was 1.1mm in width and at No.22 was 1.4mm. Both sides showed the width was insufficient although the height was enough.

![Figure 5](image4) Preoperative view

Alveolar ridge appeared enough volume.

![Figure 6](image5) Implant beds were made using skeletal drilling.

Implants were placed at No.12 and NO.22. Most surface of both implants were exposed.

![Figure 7](image6) View after lifting gingival flap. The ridge was thin.

A bone block was harvested at the site of the mentum using piezoelectric surgical device.

CASE REPORT

Case: No.651, female, 46 years, 162cm, 53kg.


Main complaint: Upper anterior bridge consisting of 7 teeth from No.12 to 22 were missing.

General condition:

Main complaint: Upper anterior bridge consisting of 7 teeth from No.12 to 22 were missing.

Oral and X-ray findings: Four teeth from No.12 to 22 were missing. The alveolar ridge appeared to be high enough; however alveolar bone was insufficient in width for implant placement (Figure 12-34).

Surgical procedure: Under IV sedation, the anteroalveolar ridge bone was exposed (Figure 5). Two rough surface titanium implants were placed (Figure 6). A bone block was harvested at the site of the mentum (Figure 7). It was divided into two. They were modified and a screw hole was made with fiber-less Er:YAG laser (Lite Touch laser, Syneron Ltd. Israel) (Figure 8). They were transplanted at the anteroalveolar ridge using a titanium screw (Figure 10). B-TCP granules and a titanium mesh were placed (Figure 11). A gingival flap was replaced and sutured (Figure 12). Six months later, a second surgery was carried out and provisional restoration was placed (Figure 13,14,15). Three months later, final restoration was set.

![Figure 8](image8) A bone hole was prepared using the laser (6W, 200mλ x 30Hz, full water spray, 1.30λ x 178λ sapphire tip).

![Figure 9](image9) A bone hole was checked to penetrate. It was easy to hold the small block. Sharp corner was smoothed.

![Figure 10](image10) 2 pieces of blocks were transplanted at the anterior wall and fixed using a titanium screw.

![Figure 11](image11) B-TCP granules were placed and a titanium mesh was covered.

Results

Three years after the implant treatment, the bridge function was normal (Figure 16,17). However, the shrinkage of alveolar ridge was observed.

![Figure 12](image12) A gingival flap was replaced and sutured.

![Figure 13](image13) Post operative view at 2weeks.

![Figure 14](image14) A custom abutment was set.

![Figure 15](image15) Provisional restoration was set.

![Figure 16](image16) Panoramic radiograph 3years later after post operation

![Figure 17](image17) CBCT scan (cross-sectional slice) 3years later after post operation

A new bone was developed at the labial side of both implants at No.12 and No.22.

Discussion and Conclusion

It is the reason why a new model of fiber-less Er:YAG laser was used to this case. This case was difficult to place implant because of the thin alveolar bone. Small bone block was planed to be transplanted to augment the alveolar bone.

The new model of fiber-less Er:YAG laser was used to modify it for making small hole and smoothing the sharp outline. Bone substitutes were used to add the volume of augmented space and titanium mesh was also placed to make the outline of the space. The shrinkage of the transplanted bone will be large. It is necessary to use it with non-resorbable substitutes for maintaining the volume.

The new model of fiber-less Er:YAG laser offers significant advantages over others like noncontact intervention, no mechanical vibration, free and elaborate cut geometries and aesthetic effects. It also offers an attractive alternative drilling modality because it does not require physical contact with the bone in order to drill holes and allows precise control of bone cutting.

In conclusion, when a small bone block was shaved and holded, Er:YAG laser was useful in combination with conventional devices; drilling and piezoelectric surgical device.